A synthetic gene circuit for measuring autoregulatory feedback control.
نویسندگان
چکیده
Autoregulatory feedback loops occur in the regulation of molecules ranging from ATP to MAP kinases to zinc. Negative feedback loops can increase a system's robustness, while positive feedback loops can mediate transitions between cell states. Recent genome-wide experimental and computational studies predict hundreds of novel feedback loops. However, not all physical interactions are regulatory, and many experimental methods cannot detect self-interactions. Our understanding of regulatory feedback loops is therefore hampered by the lack of high-throughput methods to experimentally quantify the presence, strength and temporal dynamics of autoregulatory feedback loops. Here we present a mathematical and experimental framework for high-throughput quantification of feedback regulation and apply it to RNA binding proteins (RBPs) in yeast. Our method is able to determine the existence of both direct and indirect positive and negative feedback loops, and to quantify the strength of these loops. We experimentally validate our model using two RBPs which lack native feedback loops and by the introduction of synthetic feedback loops. We find that RBP Puf3 does not natively participate in any direct or indirect feedback regulation, but that replacing the native 3'UTR with that of COX17 generates an auto-regulatory negative feedback loop which reduces gene expression noise. Likewise, RBP Pub1 does not natively participate in any feedback loops, but a synthetic positive feedback loop involving Pub1 results in increased expression noise. Our results demonstrate a synthetic experimental system for quantifying the existence and strength of feedback loops using a combination of high-throughput experiments and mathematical modeling. This system will be of great use in measuring auto-regulatory feedback by RNA binding proteins, a regulatory motif that is difficult to quantify using existing high-throughput methods.
منابع مشابه
Accurate prediction of gene feedback circuit behavior from component properties
A basic assumption underlying synthetic biology is that analysis of genetic circuit elements, such as regulatory proteins and promoters, can be used to understand and predict the behavior of circuits containing those elements. To test this assumption, we used time-lapse fluorescence microscopy to quantitatively analyze two autoregulatory negative feedback circuits. By measuring the gene regulat...
متن کاملA positive feedback-based gene circuit to increase the production of a membrane protein
BACKGROUND Membrane proteins are an important class of proteins, playing a key role in many biological processes, and are a promising target in pharmaceutical development. However, membrane proteins are often difficult to produce in large quantities for the purpose of crystallographic or biochemical analyses. RESULTS In this paper, we demonstrate that synthetic gene circuits designed specific...
متن کاملRobust and sensitive control of a quorum-sensing circuit by two interlocked feedback loops
The quorum-sensing (QS) response of Vibrio fischeri involves a rapid switch between low and high induction states of the lux operon over a narrow concentration range of the autoinducer (AI) 3-oxo-hexanoyl-L-homoserine lactone. In this system, LuxR is an AI-dependent positive regulator of the lux operon, which encodes the AI synthase. This creates a positive feedback loop common in many bacteria...
متن کاملRelaxation rates of gene expression kinetics reveal the feedback signs of autoregulatory gene networks
The transient response to a stimulus and subsequent recovery to a steady state are the fundamental characteristics of a living organism. Here we study the relaxation kinetics of autoregulatory gene networks based on the chemical master equation model of single-cell stochastic gene expression with nonlinear feedback regulation. We report a novel relation between the rate of relaxation, character...
متن کاملOptimal feedback strength for noise suppression in autoregulatory gene networks.
Autoregulatory feedback loops, where the protein expressed from a gene inhibits or activates its own expression are common gene network motifs within cells. In these networks, stochastic fluctuations in protein levels are attributed to two factors: intrinsic noise (i.e., the randomness associated with mRNA/protein expression and degradation) and extrinsic noise (i.e., the noise caused by fluctu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Integrative biology : quantitative biosciences from nano to macro
دوره 8 4 شماره
صفحات -
تاریخ انتشار 2016